OBSERVATIONS & RECOMMENDATIONS After reviewing data collected from **First Connecticut Lake**, **Pittsburg**, the program coordinators have made the following observations and recommendations. Welcome to the New Hampshire Volunteer Lake Assessment Program! As your group continues to participate in VLAP each summer, the database created for your lake will help your monitoring group track water quality trends and will ultimately enable your group and DES to identify potential pollutant sources from the watershed that may affect lake quality. As a rule of thumb, please try to sample at least once per month during the summer months (**June**, **July**, and **August**). In addition, it may be necessary to conduct rain event sampling at multiple locations along a stream using the bracketing technique to identify sources of pollution. Furthermore, baseline studies could involve bi-weekly or monthly sampling for an extended period of time. DES will let you know if this type of sampling is appropriate. We understand that future sampling will depend upon volunteer availability, and your group's goals and funding availability. We would like to point out that **water quality trend analysis is not feasible with only a few data points.** It will take many years to develop a statistically sound set of water quality baseline data. Specifically, after 10 consecutive years of participation in the program, we will be able to analyze the in-lake data with a simple statistical test to determine if there has been a significant change in the annual mean chlorophyll-a concentration, Secchi disk transparency reading, and phosphorus concentration. Therefore, frequent and consistent sampling will ensure useful data for future analyses. Please contact the VLAP Coordinator early this spring to schedule the annual DES lake visit. It would be best to schedule the DES visit for early June to refresh your sampling skills! Finally, please remember that one of your most important responsibilities as a volunteer monitor is to educate your association, community, and town officials about the quality of your lake and what can be done to protect it! DES biologists may be able to assist you in educating your association members by attending your annual lake association meeting. If your monitoring group's sampling events this year were limited due to not having enough time to pick-up or drop-off samples at the Limnology Center in Concord, please remember the Plymouth State University Center for the Environment Satellite Laboratory is open in Plymouth. This laboratory was established to serve the large number of lakes/ponds in the greater North region of the state. This laboratory is inspected by DES and operates under a DES approved quality assurance plan. We encourage your monitoring group to utilize this laboratory next summer for all sampling events, except for the annual DES biologist visit. To find out more about the Center for the Environment Satellite Laboratory, and/or to schedule dates to pick up bottles and equipment, please call Janet Towse or Adam Baumann, laboratory managers, at (603) 535-3269. The invasive alga, Didymo (rock snot), has been in the Connecticut River in Pittsburg. Please visit www.des.nh.gov/wmb/exoticspecies/didymo for more information on this organism. #### FIGURE INTERPRETATION Figure 1 and Table 1: Figure 1 in Appendix A shows the historical and current year chlorophyll-a concentration in the water column. Table 1 in Appendix B lists the maximum, minimum, and mean concentration for each sampling year that the lake has been monitored through VLAP. Chlorophyll-a, a pigment found in plants, is an indicator of the algal abundance. Because algae are usually microscopic plants that contain chlorophyll-a, and are naturally found in lake ecosystems, the chlorophyll-a concentration measured in the water gives an estimation of the algal concentration or lake productivity. **The median summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 4.58 mg/m³.** The current year (the top graph) and historical data show that the **2007** chlorophyll-a concentration is *much less than* the state median and is *slightly less than* the similar lake median. For more information on the similar lake median, refer to Appendix F. Please keep in mind that this observation is based on limited data. As your group expands its sampling program to include additional events each year, we will be able to determine trends with more accuracy and confidence. After 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean chlorophyll-a concentration since monitoring began. Figure 2 and Tables 3a and 3b: Figure 2 in Appendix A shows the historical and current year data for transparency with and without the use of a viewscope. Table 3a in Appendix B lists the maximum, minimum and mean transparency data without the use of a viewscope and Table 3b lists the maximum, minimum and mean transparency data with the use of a viewscope for each year that the lake has been monitored through VLAP. Volunteer monitors use the Secchi disk, a 20 cm disk with alternating black and white quadrants, to measure how far a person can see into the water. Transparency, a measure of water clarity, can be affected by the amount of algae and sediment in the water, as well as the natural color of the water. **The median summer transparency for New Hampshire's lakes and ponds is 3.2 meters.** The current year (the top graph) and historical data show that the non-viewscope **2007** in-lake transparency is *slightly greater than* the state median and is *much less than* the similar lake median. Please refer to Appendix F for more information about the similar lake median. Surface water conditions at the time of sampling were recorded as small waves. These conditions can impair the ability to view the secchi disk in the water often leading to decreased transparency readings. The current year data (the top graph) show that the viewscope in-lake transparency was *greater than* the non-viewscope transparency on the **June** sampling event. As discussed previously, a comparison of transparency readings taken with and without the use of a viewscope shows that the viewscope typically increases the depth to which the Secchi disk can be seen into the lake, particularly on sunny and windy days. We recommend that your group measure Secchi disk transparency with and without the viewscope on each sampling event. It is important to note that viewscope transparency data are not compared to a New Hampshire median or similar lake median. This is because lake transparency has not been historically measured by DES with a viewscope. At some point in the future, the New Hampshire and similar lake medians for viewscope transparency will be calculated and added to the appropriate graphs. Please keep in mind that these observations are based on limited data. As your group expands its sampling program to include additional events each year, we will be able to determine trends with more accuracy and confidence. Again, please keep in mind that this trend is based on only **one** year of data. As previously discussed, after 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean transparency since monitoring began. Typically, high intensity rainfall causes sediment-laden stormwater runoff to flow into surface waters, thus increasing turbidity and decreasing clarity. Efforts should continually be made to stabilize stream banks, lake shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the lake. Guides to best management practices that can be implemented to reduce, and possibly even eliminate, nonpoint source pollutants, are available from DES upon request. Figure 3 and Table 8: The graphs in Figure 3 in Appendix A show the amount of epilimnetic (upper layer) phosphorus and hypolimnetic (lower layer) phosphorus; the inset graphs show current year data. Table 8 in Appendix B lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the lake has been sampled through VLAP. Phosphorus is typically the limiting nutrient for plant and algae growth in New Hampshire's lakes and ponds. Excessive phosphorus in a lake/pond can lead to increased plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 12 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L. The current year (inset graphs) and historical data for the epilimnion and hypolimnion show that the **2007** phosphorus concentration *much less than* the state median and is *approximately equal to* the similar lake median. Refer to Appendix F for more information about the similar lake median. Please keep in mind that these observations are based on limited data. As your group expands its sampling program to include additional events each year, we will be able to determine trends with more accuracy and confidence. As discussed previously, after 10 consecutive years of sample collection, we will be able to conduct a statistical analysis of the historical data to objectively determine if there has been a significant change in the annual mean phosphorus concentration since monitoring began. #### TABLE INTERPRETATION # > Table 2: Phytoplankton Table 2 in Appendix B lists the current and historical phytoplankton and/or cyanobacteria observed in the lake. Specifically, this table lists the three most dominant phytoplankton and/or cyanobacteria observed in the sample and their relative abundance in the sample. The dominant phytoplankton species observed in the **June** sample were *Dinobryon* (Golden-Brown), *Tabellaria* (Diatom), and *Synedra* (Diatom). Phytoplankton populations undergo a natural succession during the growing year. Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding yearly plankton succession. Diatoms and golden-brown algae are typical in New Hampshire's less productive lakes and ponds. ## > Table 4: pH Table 4 in Appendix B presents the in-lake and tributary current year and historical pH data. pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 6.0 typically limits the growth and reproduction of fish. A pH between 6.0 and 7.0 is ideal for fish. The median pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.6**, which indicates that the surface waters in the state are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report. The mean pH at the deep spot this year ranged from **6.43** in the hypolimnion to **6.37** in the epilimnion, which means that the water is *slightly acidic*. Due to the state's abundance of granite bedrock in the state and acid deposition received from snowmelt, rainfall, and atmospheric particulates, there is little that can be feasibly done to effectively increase lake pH. ## > Table 5: Acid Neutralizing Capacity Table 5 in Appendix B presents the current year and historical epilimnetic ANC for each year the lake has been monitored through VLAP. Buffering capacity (ANC) describes the ability of a solution to resist changes in pH by neutralizing the acidic input. The median ANC value for New Hampshire's lakes and ponds is **4.8 mg/L**, which indicates that many lakes and ponds in the state are at least "moderately vulnerable" to acidic inputs. For a more detailed explanation about ANC, please refer to the "Chemical Monitoring Parameters" section of this report. The mean acid neutralizing capacity (ANC) of the epilimnion (upper layer) was **5.7 mg/L**, which is **slightly greater than** the state median. In addition, this indicates that the lake is **moderately vulnerable** to acidic inputs. ## > Table 6: Conductivity Table 6 in Appendix B presents the current and historical conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current, which is determined by the number of negatively charged ions from metals, salts, and minerals in the water column. The median conductivity value for New Hampshire's lakes and ponds is **38.4 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report. The mean annual epilimnetic conductivity at the deep spot this year was **25.49 uMhos/cm**, which is *less than* the state median. # > Table 8: Total Phosphorus Table 8 in Appendix B presents the current year and historical total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. The phosphorus concentration at the deep spot was very low this year. This is a positive sign indicating that human activities in the watershed may not be influencing lake water quality. The phosphorus concentration in the **tributaries** was not measured in **2007**. However, we recommend that your monitoring group sample the major tributaries to the lake during snow-melt and periodically during rainstorms to determine if the phosphorus concentration is *elevated* in the tributaries during these times. Typically, the majority of nutrient loading to a lake occurs in the spring during snow-melt and during intense rainstorms that cause soil erosion and surface runoff and within the watershed. For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/wmb/vlap/2002/documents/Appndxd_monit oring.pdf, or contact the VLAP Coordinator. Table 9 and Table 10: Dissolved Oxygen and Temperature Data Table 9 in Appendix B shows the dissolved oxygen/temperature profile(s) collected during 2007. Table 10 in Appendix B shows the historical and current year dissolved oxygen concentration in the hypolimnion (lower layer). The presence of dissolved oxygen is vital to fish and amphibians in the water column and also to bottom-dwelling organisms. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. The dissolved oxygen concentration was *high* at all deep spot depths sampled at the lake on the **June** sampling event. As thermally stratified lakes age, and as the summer progresses, oxygen typically becomes *depleted* in the hypolimnion (lower layer) by the process of decomposition. Specifically, the loss of oxygen in the hypolimnion results primarily from biological organisms using oxygen to break down organic matter, both in the water column and particularly at the bottom of the lake where the water meets the sediment. The *high* oxygen level in the hypolimnion is a sign of the lake's overall good health. We hope this continues! Please note that a complete dissolved oxygen profile was not conducted due to strong winds at the deep spot and the meter probe floating horizontally in the water column. # > Table 11: Turbidity Table 11 in Appendix B lists the current year and historical data for in-lake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation. The deep spot turbidity was **relatively low** this year, which is good news. However, we recommend that your group sample the pond and any surface water runoff areas during significant rain events to determine if stormwater runoff contributes turbidity and phosphorus to the pond. For a detailed explanation on how to conduct rain event sampling, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/wmb/vlap/2002/documents/Appndxd_monit # Table 12: Bacteria (E.coli) oring.pdf, or contact the VLAP Coordinator. Table 12 in Appendix B lists the current year and historical data for bacteria (*E.coli*) testing. *E. coli* is a normal bacterium found in the large intestine of humans and other warm-blooded animals. *E.coli* is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage **may** be present. If sewage is present in the water, potentially harmful disease-causing organisms **may** also be present. Bacteria sampling was not conducted this year. If residents are concerned about sources of bacteria such as failing septic systems, animal waste, or waterfowl waste, it is best to conduct *E. coli* testing when the water table is high, when beach use is heavy, or immediately after rain events. #### > Table 13: Chloride Table 13 in Appendix B lists the current year and the historical data for chloride sampling. The chloride ion (Cl-) is found naturally in some surfacewaters and groundwaters and in high concentrations in seawater. Research has shown that elevated chloride levels can be toxic to freshwater aquatic life. In order to protect freshwater aquatic life in New Hampshire, the state has adopted **acute and chronic** chloride criteria of **860 and 230 mg/L** respectively. The chloride content in New Hampshire lakes is naturally low, generally less than 2 mg/L in surface waters located in remote areas away from habitation. Higher values are generally associated with salted highways and, to a lesser extent, with septic inputs. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation. Chloride sampling was **not** conducted during **2007**. Table 14: Current Year Biological and Chemical Raw Data Table 14 in Appendix B lists the most current sampling year results. Since the maximum, minimum, and annual mean values for each parameter are not shown on this table, this table displays the current year "raw," meaning unprocessed, data. The results are sorted by station, depth, and then parameter. #### > Table 15: Station Table As of the spring of 2004, all historical and current year VLAP data are included in the DES Environmental Monitoring Database (EMD). To facilitate the transfer of VLAP data into the EMD, a new station identification system had to be developed. While volunteer monitoring groups can still use the sampling station names that they have used in the past and are most familiar with, an EMD station name also exists for each VLAP sampling location. Table 15 in Appendix B identifies what EMD station name corresponds to the station names you have used in the past and will continue to use in the future. ## **DATA QUALITY ASSURANCE AND CONTROL** #### **Annual Assessment Audit:** During the annual visit to your lake, the biologist trained your group how to collect samples at the deep spot and the outlet. Your group learned very quickly and did a great job following instructions. In future years, the biologist will conduct a "Sampling Procedures Assessment Audit" of your monitoring group during the annual visit. Specifically, the biologist will observe the performance of your monitoring group while sampling and will document the ability of the volunteer monitors to follow the proper field sampling procedures (as outlined in the VLAP Monitor's Field Manual). This assessment is used to identify any aspects of sample collection in which volunteer monitors fail to follow proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure that the samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions. #### **USEFUL RESOURCES** Acid Deposition Impacting New Hampshire's Ecosystems, DES fact sheet ARD-32, (603) 271-2975 or www.des.nh.gov/factsheets/ard/ard-32.htm. Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, DES Booklet WD-03-42, (603) 271-2975. Best Management Practices for Well Drilling Operations, DES fact sheet WD-WSEB-21-4, (603) 271-2975 or www.des.nh.gov/factsheets/ws/ws-21-4.htm. Biodegradable Soaps and Water Quality, DES fact sheet BB-54, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-54.htm. Canada Geese Facts and Management Options, DES fact sheet BB-53, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-53.htm. Cyanobacteria in New Hampshire Waters Potential Dangers of Blue-Green Algae Blooms, DES fact sheet WMB-10, (603) 271-2975 or www.des.nh.gov/factsheets/wmb/wmb-10.htm. Erosion Control for Construction in the Protected Shoreland Buffer Zone, DES fact sheet WD-SP-1, (603) 271-2975 or www.des.nh.gov/factsheets/sp/sp-1.htm. Freshwater Jellyfish In New Hampshire, DES fact sheet WD-BB-5, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-51/htm. *Impacts of Development Upon Stormwater Runoff,* DES fact sheet WD-WQE-7, (603) 271-2975 or www.des.nh.gov/factsheets/wqe/wqe-7.htm. *IPM:* An Alternative to Pesticides, DES fact sheet WD-SP-3, (603) 271-2975 or www.des.nh.gov/factsheets/sp/sp-3.htm. Iron Bacteria in Surface Water, DES fact sheet WD-BB-18, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-18.htm. Lake Foam, DES fact sheet WD-BB-4, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-5.htm. Lake Protection Tips: Some Do's and Don'ts for Maintaining Healthy Lakes, DES fact sheet WD-BB-9, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-9.htm. Low Impact Development Hydrologic Analysis. Manual prepared by Prince George's County, Maryland, Department of Environmental Resources. July 1999. To access this document, visit www.epa.gov/owow/nps/lid_hydr.pdf or call the EPA Water Resource Center at (202) 566-1736. Low Impact Development: Taking Steps to Protect New Hampshire's Surface Waters, DES fact sheet WD-WMB-16, (603) 271-2975 or www.des.nh.gov/factsheets/wmb/wmb-17.htm. Proper Lawn Care In the Protected Shoreland, The Comprehensive Shoreland Protection Act, DES fact sheet WD-SP-2, (603) 271-2975 or www.des.nh.gov/factsheets/sp/sp-2.htm. Road Salt and Water Quality, DES fact sheet WD-WMB-4, (603) 271-2975 or www.des.nh.gov/factsheets/wmb/wmb-4.htm. Sand Dumping - Beach Construction, DES fact sheet WD-BB-15, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-15.htm. Shorelands Under the Jurisdiction of the Comprehensive Shoreland Protection Act, DES fact sheet SP-4, (603) 271-2975 or www.des.nh.gov/factsheets/sp/sp-4.htm. Soil Erosion and Sediment Control on Construction Sites, DES fact sheet WQE-6, (603) 271-2975 or www.des.nh.gov/factsheets/wqe/wqe-6.htm. Swimmers Itch, DES fact sheet WD-BB-2, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-2.htm. Through the Looking Glass: A Field Guide to Aquatic Plants, North American Lake Management Society, 1988, (608) 233-2836 or www.nalms.org. Weed Watchers: An Association to Halt the Spread of Exotic Aquatic Plants, DES fact sheet WD-BB-4, (603) 271-2975 or www.des.nh.gov/factsheets/bb/bb-4.htm. Watershed Districts and Ordinances, DES fact sheet WD-WMB-16, (603) 271-2975 or www.des.nh.gov/factsheets/wmb/wmb-16.htm.